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Development of a Two-Stage Life Cycle Model for 
Oncorhynchus kisutch (Coho Salmon) in the Upper 
Cowlitz River Basin, Washington 

John M. Plumb and Russell W. Perry 

Abstract 
Recovery of salmon populations in the upper Cowlitz River Basin depends on trap-and-haul 

efforts owing to impassable dams. Therefore, successful recovery depends on the collection of out-
migrating juvenile salmon at Cowlitz Falls Dam (CFD) for transport below downstream dams, as well 
as the collection of adults for transport upstream from the dams. Tacoma Power began downstream 
fish collection efforts at CFD in the mid-1990s and has been working consistently since then to 
improve collection efficiency to support self-sustaining salmon and steelhead (Onchorhynchus spp.) 
populations in the upper Cowlitz River Basin. Although much work has focused on estimating fish 
collection efficiency (FCE), there has been relatively little focus on modeling population dynamics to 
understand how fish collection efficiency and other factors drive production of both juvenile and adult 
salmon over their life cycle. As a first step towards understanding the factors affecting population 
dynamics of Oncorhynchus kisutch (coho salmon) in the upper Cowlitz River Basin, we developed a 
statistical life cycle model using adult escapement and age structure data, juvenile collection data, and 
juvenile fish collection efficiency estimates. The goal of the statistical life cycle model is to estimate 
annual production and survival during two critical life-stage transitions: the freshwater production 
from escapement of adults upstream from CFD to collection of juveniles at CFD, and the juvenile-to-
adult survival from the time of collection at the dam to the return of adults. To structure the life cycle 
model, we used the Ricker stock-recruitment model to estimate juvenile production from the number 
of parent spawners. This approach allowed us to account for density dependence at high spawner 
abundances while estimating annual productivity, defined as the number of juveniles produced per 
spawner at low spawner abundance. We then expressed productivity as a function two key variables 
affecting the number of juveniles collected and transported at CFD: (1) annual FCE, and (2) the annual 
number of days that spill occurred at CFD from September 1 to April 30. 

Our key findings were as follows: 
1. FCE was the primary factor affecting productivity of coho salmon upstream from CFD because 

FCE affects the number of juveniles that survive to continue downstream migration;
2. Juvenile-to-adult return (JAR) rates were relatively high considering that harvest was included 

in the estimate, averaging about 3.6 percent and ranging as high as 9.1 percent, suggesting that 
adult coho salmon may be able to return to CFD at sustainable population sizes; and

3. Much variation in the estimates of juvenile fish production upriver of CFD was unexplained 
even after adult escapement and FCE were accounted for, suggesting that the model may be 
improved by exploring different covariates and model structures for juvenile production as well 
as JAR rates.
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Additionally, by including FCE in the model, we estimated that the median pre-collection productivity, 
defined as the number of juveniles produced per spawner when FCE=1, was 108.4 juveniles per 
spawner. Because this two-stage life cycle model partitions factors that affect fish production in river 
compared to the ocean environment and fish life stages, the model estimates should help inform 
fishery managers about the overall role that fish collection at CFD may have on the recovery and 
sustainability of coho salmon populations.  

Introduction 
Recovery of salmon populations in the upper Cowlitz River Basin, Washington (fig. 1), 

depends on trap-and-haul efforts owing to impassable dams. Therefore, successful recovery depends 
on the collection of out-migrating juvenile salmon at Cowlitz Falls Dam (CFD) for transport below 
downstream dams, as well as the collection of adults for transport upstream from the dams. This model 
is intended to complement an existing deterministic life cycle used by fisheries managers to track 
demographic parameters to determine hatchery production. The state-space life cycle model that we 
have developed here incorporates observation and process error in abundance and production 
estimates, allowing us to incorporate the uncertainty in annual life-cycle demographic parameters. 

 

 
Figure 1.  Image of Cowlitz River Basin, Washington, showing dams, reservoirs, and major tributaries. 

Our modeling approach divides the life cycle into two stages and then includes not only age 
structure but also sex and rearing origin (for example, hatchery or naturally produced) in the adult 
returns. Multistage life cycle models provide a powerful analytical framework for understanding how 
each life stage of a population contributes to population growth rate (Moussalli and Hilborn, 1986; 
Greene and Beechie, 2004). Multistage models may also be used as an analytical framework to 
explicitly estimate demographic parameters of a population model. This approach has an advantage 
over single-stage stock-recruitment models by allowing population growth rates to be partitioned 
among life stages rather than aggregated over an entire life cycle. Partitioning among life stages 
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facilitates estimation of (1) stage-specific density dependence, and (2) stage-specific effects of 
environmental factors or management actions. For example, Zabel and others (2006) estimated 
parameters of a multistage model used in the context of a population viability analysis for 
spring/summer Oncorhynchus tshawytscha (Chinook salmon) in the Snake River, but such an 
approach has yet to be applied to a salmon population in another river basin. 

Typically, data informing estimates of abundance at particular “check points” in the life cycle 
determine the complexity of the multistage model that can be fit to the data. For Oncorhynchus kisutch 
(coho salmon) at Cowlitz Falls Dam (CFD), we have developed a two-stage model that encompasses 
(1) upstream passage of spawners at CFD to subsequent downstream passage of their progeny at the 
dam, and (2) downstream collection of juveniles at CFD to their subsequent return from the ocean and 
collection at the downstream barrier dam 2‒3 years later. This approach partitions the life cycle of 
coho salmon spatially and temporally, which allows us to fit and compare alternative models with 
covariates specific to each stage. This report describes the structure of the two-stage life cycle model 
as applied to Cowlitz River coho salmon, presents preliminary results from fitting the model to data, 
and outlines future directions and developments. 

Methods 
Our model extends the single-stage state-space framework first developed by Fleischman and 

others (2013) and applied by Courter and others (2019) to Clackamas River steelhead. The state-space 
model consists of two parts: (1) a process model for the underlying state dynamics, and (2) an 
observation model that links the data to the true underlying state. The state-space model also may be 
viewed as a hierarchical model where the state (abundance of fish) evolves according to a dynamic 
population process model (for example, a Ricker model) with some process error, and observations on 
the state (“the data”) are made conditional on the true but unobservable state. Life cycle models can 
range from very simple theoretically based population models (for example, the Beverton-Holt stock-
recruitment model) to very complex spatially explicit simulation models linked to hydrosystem 
hydrodynamic models (for example, the COMPASS model for a single transition in a life cycle model; 
Zabel and others, 2008). We decided to develop a model of intermediate complexity that casts the two-
stage life cycle model in a state-space framework (Newman and others, 2014). We used a state-space 
framework implemented in a Bayesian context because of the following: 

• The model provides a statistical estimation framework for retrospective statistical analysis and 
a stochastic simulation framework for prospective analysis to evaluate alternative management 
actions. 

• The model accounts for uncertainty in abundance estimates. A state-space framework accounts 
for observation uncertainty in the abundance estimates and other data (for example, age 
structure) while estimating process uncertainty. 

• The model allows for missing data. By drawing missing data from an appropriate probability 
model, uncertainty owing to missing data can be propagated without having to omit data or 
assume fixed values for missing data. 

Thus, a two-stage state-space life cycle model for coho salmon strikes an appropriate balance between 
model complexity, tractability, and applicability given the goals of performing both retrospective and 
prospective analyses to guide future management. 
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Life Cycle Structure of Upper Cowlitz River Basin Coho Salmon 
The state-space model consists of two parts: (1) a process model for the underlying state 

dynamic, and (2) an observation model that links the data to the true underlying state. The state-space 
model may also be thought of as a hierarchical model where the state (abundance) evolves according 
to a process model for population dynamics (for example, a Ricker model) with some process error, 
and observations on the state (“the data”) are made conditional on the true but unobservable state. 

First, to model the adult to juvenile transition (fig. 2), we used the Ricker model to express the 
number of juveniles collected at CFD as a density-dependent function of the number of female adults 
passing CFD in brood year y (Ricker 1954): 

 J, F, F, P,J,ln( ) ln( ) ln( )y y y yR E Eα β ε= + − + , (1) 
where 
 J,yR  is the true but unobserved number of collected juvenile (J) recruits produced by 

female (F) adult escapement (E); 
 F,yE  in brood year y; 
 α  is the productivity parameter estimating the slope at the origin (juvenile recruits per 

female spawner at low spawner abundance in the absence of density dependence); 
 β  is the density dependence parameter, where 1/ β  represents the number of spawners 

that produce maximum recruitment (Smax); and 
 P,J, yε   is a normally distributed process (P) error with mean zero and standard deviation P,Jσ . 

 
 
Figure 2.  Schematic showing structure of the two-stage life cycle model for Cowlitz River coho salmon. Model 
includes juvenile age-structure at Cowlitz Falls Dam (J0=subyearling, J1=yearling) and adult age (M2, M3, …), sex 
(M and F), and outmigration strategy (subyearling ocean entry, yearling ocean entry) in the adult returns. 
Spawner-to-juvenile transition is modeled with a Ricker function, and the juvenile-to-adult transition is modeled 
with a juvenile-to-adult return rate (JAR). Solid arrows designate the structure that is incorporated in the model. 
Dashed arrows designate potential structure that can be incorporated into future model developments. 
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Because productivity of juveniles directly depends on the fraction of juvenile coho salmon collected at 
CFD, we modeled the productivity parameter (α ) as a function of the annual fish collection efficiency 
(FCE) for coho salmon at CFD in year y+2 in the following manner: 

 0 1 2 2 1ln( )y y yFCE Spα θ θ θ+ += + + , (2) 
where 
 0θ  is the intercept, 
 1θ  is the slope for the effect of fish collection efficiency on productivity, and 
 2θ  is the slope for the effect of the number of days of spill (Sp) at CFD between 

September 1st to April 30th in year y+1 on coho salmon productivity. 
 
This period was chosen because it coincides with winter spill conditions that can pass parr into Riffe 
Lake where they become landlocked and lost to the anadromous fishery (Kock and others, 2012). 
Specifically, we used the number of days that the exceeded 10,000 ft3/s as recorded at the Kosmos 
river gage site (U.S. Geological Survey [USGS] 14233500; see 
https://waterdata.usgs.gov/wa/nwis/uv?site_no=14233500) because these flows indicate involuntary 
spill conditions at CFD. The number of days of spill was standardized such that setting FCE=1 and 
Sp=0 provides estimates of pre-collection productivity of juvenile coho salmon at the mean number of 
days of spill. 

For the juvenile-to-adult transition, we model the number of adult returns as a log-normal 
function of a density independent juvenile-to-adult return rate (JAR): 

 A, J, P,A,ln( ) ln( ) ln(JAR)y y yR R ε= + + , (3) 
where 
 A, yR  is the number of adult (A) recruits (male and female) produced from the ,J yR  

juveniles passing CFD that arose from female spawners in brood year y, and 
 P,A,yε  is a normally distributed process (P) error with a mean of zero and standard 

deviation= P,Aσ . 
Given that juveniles can pass CFD at ages 1–2 (from brood year not actual fish age) and adults 

return at ages 2–3, the initial 2 years of juvenile recruits and 2 years of adult recruits that produced 
returns beginning in 2000 were not linked to the two-stage stock-recruitment model. These initial state 
vectors were estimated as draws from common log-normal distributions with parameters ( )J,0ln R , 

RJ0σ  and ( )A,0ln R , RA0σ , respectively, for juveniles and adults. 

Given juvenile recruits, the number of juveniles ( Ja ) passing CFD in calendar year t was 
modeled as: 

 J J J J, J, J, ,t a t a t a aJ R p− −= , (4) 
where 
 

J,t aJ  is the number of juveniles in year t of age Ja , and 
 

J JJ, ,t a ap −  is the proportion of juvenile recruits from brood year Jy t a= −  emigrating at age Ja  
(fig. 3). 

https://waterdata.usgs.gov/wa/nwis/uv?site_no=14233500
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Given adult recruits, we modeled the number of adults returning at age Aa  of sex s and 
outmigration strategy o as: 

 A A A A, , , A, , , ,t a s o t a a t a s oN R p− −= , (5) 
where 
 

A, , ,t a s oN  is the number of adults returning in year t at age Aa , of sex s, and outmigration 
strategy o; and 

 
A A, , ,a t a s op −  is the proportion of recruits from brood year Ay t a= −  returning at age Aa , sex s, 

and outmigration strategy o (fig. 3). 
Here, outmigration strategy refers to whether juveniles were collected at CFD as subyearlings 

or yearlings. Fish that pass CFD as subyearling fry are currently transported to locations upstream 
from CFD and released into the wild. Because subyearling and yearling smolts have only been tracked 
since 2014, our current formulation of the two-state model does not yet account for the collection and 
transport of subyearling coho salmon outmigrants. The model also does not account for juvenile 
outmigration strategy in the adult returns, but in the future such information would allow us to estimate 
SAR separately for each outmigration strategy. Nonetheless, given 2 adult age classes and 2 
outmigration strategies, the brood-year specific return probabilities are 

A AA, , , ,y a t a s op −=p . 
 

 
Figure 3.  Image showing the reconstruction of age-specific juvenile abundance (green cells; J0 and J1) that gives 
rise to the total number of recruits (RJ) from a given brood year, and the age- and sex-specific adult return (blue 
cells; RA) conditional on their juvenile outmigration strategy (J0 adults, J1 adults) from recruits generated by 
spawners in brood year y. 

Vectors of brood-year specific outmigration J, yp and return A, yp  probabilities can be modeled 
hierarchically as draws from a Dirichlet distribution: 

 ( ), Dirichleti y iγp  ,  (6) 
where 
 i is J (juvenile) or A (adult), and 
 iγ  is a vector of parameters of the same length as ,i yp . 
Under this formulation, the expected proportion of the kth class is 

 

,

,
1

k i
K

k i
k

γ

γ
=
∑

,  (7) 

and the inverse of the sum in the denominator scales with annual variation in ,i yp . 
  

Brood year Spawners Age 0 Age 1 Age2 Age3 Age2 Age3 RJ RA
2 1601 11302 2858
3 0 0
4 11302 291 0
5 872 0 1695

Juveniles Adult Males Adult Females
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Given age-specific juvenile emigration and adult returns from brood year y in calendar year t, 
the total number of juveniles passing CFD in calendar year t is the sum of the abundance-at-age over 
all ages: 

  
J

J

,t t a
a

J J=∑
. (8) 

The current model for coho salmon at CFD does not account for juvenile outmigration strategy, 
brood stock removal, or harvest rates; however, we show here how these estimates can be incorporated 
in the current framework of the model for future applications. For example, the total number of 
returning adults in calendar year t is the sum of the abundances across all age, sex, and outmigration 
classes: 

 
A

A

, , ,t t a s o
s o a

N N=∑∑∑
. (9) 

Returns of subclasses in year t are calculated similarly by summing over the appropriate 
indices. For example, the number of female returns in calendar year t is 

 
A

A

F, , , F,t t a s o
o a

N N ==∑∑
. (10) 

Additionally, the age, sex, and outmigration structure in the adult returns each calendar year is 

 

A

A

, , ,
, , ,

a t s o
a t s o

t

N
q

N
=

, (11) 
where 
 

A , , ,a t s oq  is the fraction of the adults returning in calendar year t at age Aa , sex s, and 
outmigration strategy o (that is, if data on outmigration strategy were included in the 
model). 

 
Escapement (Et) of spawners past CFD in calendar year t includes hatchery-origin adults 

released upriver of CFD to spawn in the wild (Ht) plus naturally produced spawners (Nt). The model 
can accommodate those that survive harvest (Ct) and naturally produced fish taken for hatchery brood 
stock (Bt): 

 t t t t tE N C B H= − − +  . (12) 
The annual harvest rate below CFD can be a composite of ocean and in-river harvest that is 

assumed constant across ages and sexes of returns in a given year such that catch is: 

 t t tC U N= ,  (13) 
where 
 tU  is the composite harvest rate representing the fraction of returns that were harvested 

in calendar year t. 
 

Escapement of female spawners, which dictates juvenile recruits, is: 

 , , , , , ,F t F t F t F t F t t F t tE N q C q B f H= − − + ,  (14) 
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where 
 ,F tf  is the fraction of hatchery-origin adults that are female; and 
 ,F tq  is the proportion of females in naturally produced returns, calculated as: 

 
A

A

F, , , F,  t a t s o
o a

q q ==∑∑
. (15) 

The Observation Model 
Observations to inform the parameters of the state model include the following: 
1. Collected abundances for naturally produced subyearling and yearling outmigrants 

collected at CFD from 2000 to 2018. Estimates of subyearling migrants collected at CFD 
and transported back upstream have not yet been included in the model. 

2. Estimates of annual collection efficiency for juvenile coho salmon at CFD for 2000–18. 
3. Estimates of abundance of hatchery-origin and naturally produced adults released upstream 

from CFD for 2000–18. 
4. Estimates of run composition of hatchery and naturally produced adults in terms of age and 

sex, 2000–18. 
5. Estimates of the number of naturally produced adults removed for hatchery brood stock for 

2000–18 (not yet included into the model). 
6. Estimates of ocean and in-river harvest rate indices as well as harvest upstream from CFD 

for 2000–18 (not yet included in the model). 
As this list of input data indicates, each observation component is an estimate of the true value 

and therefore has uncertainty associated with the estimate (data provided by Tacoma Power in 
partnership with Washington Department of Fish and Wildlife). This uncertainty arises from several 
sources such as sampling at the dam and during transport. Potential future expansions of the model 
include improving the incorporation of observation error in estimates of productivity and capacity. 

Factors Affecting Key Demographic Parameters 
Exogenous environmental factors can affect survival during the adult-to-juvenile transition 

upstream from CFD and the juvenile-to-adult transition downstream from CFD. Our model can be 
extended to allow productivity (α) in the adult-to-juvenile transition and JAR in the juvenile-to-adult 
transition to be expressed as a function of covariates hypothesized to influence survival: 

 1
ln( )

K

y k k
k

Xαα µ θ
=

= +∑
, (16) 

 JAR
1

ln(JAR )
J

y j j
j

Zµ λ
=

= +∑ , (17) 

where 
 α is the annual productivity expressed on a log scale, 
 JAR is juvenile-to-adult return rates expressed on a log scale, 
 μ is the overall log-mean of α  or JAR when covariates are centered about their mean, 
 kθ  is the effect of the kth covariate Xk on α , and 
 jλ  is the effect of the jth covariate jZ . 
 



9 

Covariates are expressed on an annual scale and may be lagged appropriately relative to brood year to 
represent alternative hypotheses about when a given covariate influenced a particular life stage and 
demographic parameter. For example, we may hypothesize that the productivity of juveniles arising 
from brood year y is influenced by spill levels in brood year y+1 corresponding to the period when 
subyearling migrants from brood year y may be flushed downstream of CFD. Although equation 2 
describes how we express productivity as a function of FCE and spill, here we describe more generally 
how both productivity and JAR can be modeled as functions of covariates  

Parameter Estimation 
All parameters and unknown states were estimated in a Bayesian framework using Just 

Another Gibbs Sampler (JAGS) software (Plummer, 2017) as implemented through the ‘runjags’ 
package of the R statistical programming platform (R Core Team, 2019). JAGS is a Bayesian 
estimation software package that implements Markov Chain Monte Carlo (MCMC) sampling using a 
Gibbs or Metropolis-Hastings sampler. Prior distributions for parameters were set according to 
Fleischman and others (2013). We ran three independent MCMC chains each for 80,000 iterations, 
discarding the first 30,000 to ensure that each chain had converged to its stationary stable distribution. 
We then thinned the final 50,000 iterations to 1 in 50 to reduce autocorrelation, yielding a final sample 
of 1,000 draws from each chain. Convergence of each parameter was checked visually to ensure 
mixing of the chains and quantitatively by ensuring that the Rubin-Gelman statistic ( R̂ ) was less than 
1.1 (Gelman and others, 2004). 

Results 
Summary of Data Used in the Life Cycle Model 

The abundance and escapement of adult coho salmon upstream from CFD decreased over time 
with the lowest escapement estimated in 2015 (1,390 total adults) and the highest in 2002 (62,537 total 
male and female spawners) with the number of female spawners that drive juvenile fish production 
showing a similar trend (fig. 4). The escapement of hatchery-origin fish decreased over time, but the 
escapement of natural-origin adults was relatively constant over time. Escapement of hatchery-origin 
fish ranged from a high of 23,698 total adult fish in 2002 to 413 fish in 2015, and natural escapement 
ranged from 3,661 total adult fish in 2002 to just 2 adult fish in 2013. The fraction of escapement 
comprised of hatchery-origin spawners was highly variable over time and averaged 0.80 (standard 
deviation [SD] was plus or minus [±] 0.131) over all years, ranging from a low of 0.581 in 2017 to a 
high of 0.999 in 2013 (fig. 5). 
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Figure 4.  Graph showing escapement of adult female Cowlitz River Basin coho salmon, by brood year, 
upstream from Cowlitz Falls Dam, Washington. 

Figure 5.  Time series graph showing fraction of hatchery-origin female spawners, by brood year, for coho 
salmon spawning upstream from Cowlitz Falls Dam, Washington. 
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The number of natural-origin juveniles collected at CFD (from hatchery and natural-origin 
spawners) was variable and showed little trend over time (fig. 6). On average, the total number of 
juvenile coho salmon collected annually at CFD was 118,729 (SD±87,881) and ranged from 10,505 in 
2012 to 334,718 in 2001. Juvenile coho salmon FCE at CFD averaged 0.467 (SD±0.249) and ranged 
from a low of 0.06 in 2012 to a high of 0.90 in 2015 (fig. 7). The time series of FCE suggests two 
distinct periods of low and high FCEs. The more recent years 2013–18 had the highest FCE 
(mean=0.778, SD±0.094), and years before 2013 had the lowest FCE (mean=0.324, SD±0.137; fig 7). 
These changes in FCE correspond to improvements to the juvenile fish collection facility at CFD. 
Given that the number of spawning adults was low in recent years, but FCE was high, the improved 
collection efficiencies greatly contributed to the number of juveniles collected since 2013, indicating 
the importance of estimating the effect of FCE on life cycle productivity. 

One factor that could also affect the collection of yearling coho salmon at CFD is the number 
of days that water was spilled at CFD during the preceding overwinter period prior to the yearling 
outmigration and fish collection season. Presumably, the more days that water was spilled at the dam, 
the greater the likelihood for coho salmon fry and parr to be flushed into Riffe Lake and lost to the 
anadromous fishery. On average, there were 17.4 days (SD±10.6) of spill at CFD. Over the time series, 
there was a tendency for more spill days after 2013 (fig 8). 
 

Figure 6.  Graph showing juvenile coho salmon collected, by migration (collection) year, at Cowlitz Falls Dam, 
Washington. 
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Figure 7.  Graph showing fish collection efficiency of juvenile coho salmon, by migration (collection) year, at 
Cowlitz Falls Dam, Washington. 

 

Figure 8.  Time series graph showing number of days that spill occurred during September 1–April 30 at Cowlitz 
Falls Dam, Washington. 
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Parameter Estimates Under the State-Space Model 
Posterior distributions provide a complete representation of uncertainty about model 

parameters (figs. 9 and 10). Annual FCE was found to have strong positive effect on productivity with 
a median of 3.501 (95-percent credible interval [CI]=1.914−5.184), indicating that fish collection 
efficiency at CFD had a direct and non-linear effect on the number of recruits per spawner produced 
(fig 11). This makes sense given that fish that are not collected at CFD will pass downstream into Riffe 
Lake and will not contribute to the anadromous fishery. The median of the posterior for mean 
productivity across years estimated when FCE=1 was 108.4 naturally produced juvenile recruits per 
female spawner (95-percent CI=1−404). Assuming a mean fecundity of 3,513 eggs per female 
(Tacoma Power, unpub. data, December 5, 2019), this equates to a mean egg-to-juvenile outmigrant 
survival of about 3.1 percent at low spawner density. 

The posterior distribution of the capacity parameter (β) had a median of 0.000068 (95-percent 
CI=0.000009−0.00013). Capacity is perhaps best translated into an estimate of the number of spawners 
that produce maximum juvenile recruitment, or Smax (1/β). The median of the posterior for Smax was 
14,819 female spawners (95-percent CI=5,561−51,861), suggesting a decline in juvenile recruitment at 
spawner levels greater than Smax (fig. 10). For the juvenile-to-adult transition, the median of the 
posterior for the mean JAR across all years was 0.036 (95-percent CI=0.004−0.181; fig. 12). Thus, in 
the absence of accounting for harvest, a median of 3.6 percent of juvenile outmigrants returned to the 
Cowlitz River. 
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Figure 9.  Posterior distribution graphs showing the intercept and effect of fish collection efficiency (FCE) on 
productivity, the mean productivity when FCE=1, and effect of the number of spill days under the Ricker stock-
recruitment model for coho salmon in the Cowlitz River Basin, Washington. Dashed lines represent the median of 
the posterior distribution. 
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Figure 10.  Posterior distribution graphs showing capacity as estimated under the Ricker stock-recruitment model 
for coho salmon in the Cowlitz River Basin, Washington. Dashed lines represent the median of the posterior 
distribution. 

 
Figure 11.  Graph showing relation between fish collection efficiency and the number of juveniles per spawner. 
Numbers represent the last two digits of the year, and error bars represent the 95-percent credible interval. Note 
that 2000 and 2007 overlap in value. 
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Figure 12.  Posterior distribution graph showing the juvenile-to-adult return rate for coho salmon in the Cowlitz 
River Basin, Washington. Dashed lines represent the median of the posterior distribution. 
 

The curves from the Ricker stock-recruitment model show how recruitment of naturally 
produced juveniles vary as a function of the number of female spawners (fig. 13). The data to inform 
the stock-recruitment model encompassed a relatively wide range for the number of spawners and 
juveniles—from a low of 856 to a high of 25,109 female spawners, and from 14,584 to 334,718 
juveniles collected at CFD. Thus, the estimate of stock-recruitment model parameters provides valid 
inference over a broad range of observed population levels. The effect of fish collection efficiency on 
the production of juvenile coho salmon to Cowlitz Falls Dam can be shown by comparing observed 
production estimates to pre-collection estimates of juvenile productivity. When FCE was accounted 
for, the production of juveniles was more than double the production of juveniles at CFD under 
historical average FCE. 
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Figure 13.  Graphs showing fitted Ricker function based on posterior medians of parameters expressed as 
production of juvenile recruits when fish collection efficiency (FCE) was 1 (right graph), and underobserved FCE 
(left graph). Symbols represent brood years. Note the stock recruitment curve under the observed FCE was 
estimated using the mean FCE of 0.47 over the time series. 

Owing to the hierarchical structure of the state-space model, annual variation in productivity 
and JAR can be estimated as random effects drawn from log-normal process error ( P,Jσ  and P,Aσ , see 
appendix table 1.1). Both JAR and productivity vary considerably over time, with JAR decreasing 
after brood year 2006 and productivity increasing after brood year 2011 (fig. 14; appendix tables 1.2 
and 1.3). The higher productivity since brood year 2011 is largely owing to the much higher FCE 
attained during juvenile outmigration years 2013–18. 
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Figure 14.  Graphs showing annual estimates of juvenile-to-adult return rate (top graph) and productivity (bottom 
graph). Symbols are the medians of posterior distributions, heavy lines represent the 25th–75th percentiles, and 
the thin lines show the 90-percent credible interval. 
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Discussion 
The state-space life cycle model for upper Cowlitz River Basin coho salmon is a model of 

intermediate complexity but can be used to gain insight about population dynamics and factors 
affecting different life stages of Cowlitz River Basin coho salmon. The state-space formulation of the 
model accounts for observation and process error, provides estimates of uncertainty in abundance and 
demographic parameters, and quantifies contributions of age and sex to the aggregate population. Our 
formulation of the state-space model provides a wealth of information about population dynamics such 
as estimates of process uncertainty, carrying capacity and density dependence, juvenile-to-adult 
survival rates, and factors affecting production of juvenile coho salmon in the upper Cowlitz River 
Basin, the latter being particularly important for understanding how fish collection efforts at CFD 
affect population recovery. We also show how the model can be expanded to include outmigration 
strategy, the transport of fry upstream (or downstream), harvest, as well as ocean effects on 
demographic parameters such as juvenile-to-adult return rate. 

The life cycle model for Cowlitz River coho salmon is fully functional at this time and can be 
used to provide estimates of the effect of FCE on adult-to-juvenile productivity. Nonetheless, we 
consider this analysis to be a pilot effort and proof of concept that shows the utility of multistage, 
statistical life cycle models for understanding the interplay between population dynamics and water-
management activities that influence those dynamics. We have yet to probe many other aspects of the 
dynamics of this population. For example, the Ricker model suggests that the population may 
overcompensate owing to density dependence but estimates of juvenile production at the upper end of 
the spawning distribution are uncertain. Therefore, firm conclusions regarding overcompensation 
should be withheld at this time. By incorporating a fuller set of covariates, harvest rates, and juvenile 
age structure in the model, parameter estimates, a broader set of inferences may be drawn about the 
individual contribution of these factors to the life cycle of coho salmon in upper Cowlitz River. 

Several significant updates could improve model fit and provide greater inference for fishery 
management. These updates are (1) accounting for harvest and broodstock removal, (2) including fry 
transportation (upstream or downstream) in the model framework, (3) evaluating whether the Ricker or 
Beverton-Holt stock-recruitment model provides a better fit to the data, (4) evaluating other covariates 
to explain variation in adult-to-juvenile productivity (ɑ) and juvenile-to-adult return rates (JAR; 
Logerwell and others, 2003), and (5) incorporating error in FCE in the modeled estimates and error. 

Some of the covariates that could help explain variation in adult-to-juvenile production include 
the following: 

• The fraction of hatchery fish released at each upriver location, 
• The fraction of hatchery spawners (that is, pHOS), 
• Peak wintertime flows (to estimate the effect of redd scour), 
• Recreational harvest upstream from CFD (affects the number of available spawners), and 
• The fall back of adults to below CFD. 

Covariates that may help explain variation in the annual juvenile-to-adult return rates are the 
following: 

• Pacific Decadal Oscillation (PDO), 
• Coastal Upwelling Index (CUI), 
• Sea Surface Temperatures (SST), and 
• Ocean harvest estimates and harvest downstream of CFD. 

Including and evaluating these covariates with the two-stage life cycle model could greatly improve 
the inferences drawn about the production and viability of Cowlitz River coho salmon. 
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Regardless of the improvements that can be made to the model, we were able to quantify how 
FCE at CFD directly influences the productivity of juveniles, as shown by the relation between mean 
annual productivity and FCE (fig. 11) and in the estimates of pre-collection relative to post-collection 
production (fig. 14). We also estimated a median JAR of about 3.6 percent, which is relatively high, 
especially when one considers that this return rate does not include harvest. In some brood years 
(2002–06) estimates of JAR ranged from about 5 to 10 percent (fig. 14). These findings suggest that 
adult return rates for Cowlitz River coho salmon may be high enough to meet replacement and sustain 
the population so long as juvenile production and fish collection remain sufficiently high. Future 
application of the model could include a population viability analysis to determine what FCE target 
may be needed to sustain Cowlitz River coho salmon. 

Ultimately, fisheries managers need tools to help understand how potential management 
actions affect population abundance at different parts of the life cycle to assess whether recovery goals 
are being achieved. Our life cycle model for upper Cowlitz coho salmon is a first step towards 
development of such a tool. Additional work is needed to better account for key management factors 
affecting the population (for example, harvest and brood stock) to quantify effects of the trap-and-haul 
program, and to incorporate effects of environmental variation. Nonetheless, because our model 
incorporates unaccounted for variability in demographic parameters, we can use it to simulate 
stochastic population trajectories that include important management “knobs” (for example, FCE, 
harvest) and environmental variation. Such a model would allow managers to assess the relative effect 
of alternative management scenarios on population trajectories in a probabilistic manner to understand 
the likelihood of success of a given management action in the face of environmental variability and 
uncertainty. 
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Appendix 1.  Coho Salmon Life Cycle Parameter Estimates 
The following tables provide the point estimates and credible intervals about the parameters for 

the life cycle model applied to the coho salmon population spawning upstream from Cowlitz Falls 
Dam, Washington. 

Table 1.1.  Summary statistics for posterior distributions for the two-stage life cycle model of Cowlitz River coho 
salmon showing parameters for the Ricker model, observation and process error, as well as the autocorrelation 
coefficients. 
 

Parameter Lower 95-percent 
credible interval Median Upper 95-percent 

credible interval Mean Standard 
deviation 

Ricker stock-recruitment model 

0θ  (intercept) −0.218 1.2341 2.721 1.2164 0.7617 

1θ (FCE effect) 1.8606 3.4974 5.1571 3.5101 0.8312 

2θ (Spill effect) −0.5136 −0.1278 0.2717 −0.1307 0.1983 
β (capacity) 0.000009 0.000068 0.00013 0.000069 0.000031 

maxS (1/ β ) 5,267.8 14,796.9 51,168.1 28,372.36 33,0583.4 
Observation error 

Aσ (adults) 0.8351 1.2477 1.7949 1.2804 0.2558 

Jσ (juveniles) 0.0290 0.5406 0.8770 0.5332 0.2129 
Process error 

,P Aσ
(adults) 0.0926 0.6801 1.1851 0.6791 0.2764 

,P Jσ
(juveniles) 0.0216 0.4426 0.8269 0.4403 0.2304 

Autocorrelation 

Aφ  (adults) −0.7077 0.2835 0.9987 0.2169 0.5094 

Jφ (juveniles) −0.5525 0.5511 0.9998 0.4251 0.4626 
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Table 1.2.  Summary statistics for posterior distributions of adult-to-juvenile productivity for Cowlitz River coho 
salmon showing parameters for when fish collection efficiency is assumed equal to one, and those estimated for 
each brood year. 
 

Parameter Lower 95-percent 
credible interval Median Upper 95-percent 

credible interval Mean Standard 
deviation 

 1FCEα =  0.011 108.604 403.709 178.933 1,163.215 

α [2000] 2.667 12.996 34.192 15.551 10.258 
α [2001] 2.781 19.598 74.657 27.728 25.229 
α [2002] 4.935 32.205 136.008 48.348 55.983 
α [2003] 5.023 29.393 92.914 37.525 28.661 
α [2004] 2.540 13.222 38.506 16.383 11.660 
α [2005] 3.413 15.694 44.233 19.270 13.445 
α [2006] 1.429 7.243 17.989 8.408 5.175 
α [2007] 4.314 11.733 22.134 12.498 4.952 
α [2008] 6.252 21.036 42.037 22.751 10.055 
α [2009] 1.456 4.970 11.039 5.549 2.760 
α [2010] 0.621 2.940 6.557 3.273 1.724 
α [2011] 14.252 47.554 99.271 52.296 24.822 
α [2012] 13.303 35.055 68.104 37.797 15.409 
α [2013] 18.233 54.748 100.490 57.483 22.606 
α [2014] 7.287 37.745 82.462 41.583 22.721 
α [2015] 10.269 30.596 57.932 32.541 13.147 
α [2016] 14.745 44.433 89.785 48.295 21.209 
α [2017] 1.369 14.858 41.464 18.136 16.545 
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Table 1.3.  Summary statistics for posterior distributions of juvenile-to-adult return rates (JAR) for Cowlitz River 
coho salmon showing parameters for each brood year. 
 

Parameter Lower 95-percent 
credible interval Median Upper 95-percent 

credible interval Mean Standard 
deviation 

JAR (overall) 0.003 0.036 0.175 0.058 0.085 

JAR [2000] 0.009 0.039 0.089 0.044 0.024 
JAR [2001] 0.005 0.022 0.056 0.025 0.016 
JAR [2002] 0.017 0.091 0.249 0.109 0.074 
JAR [2003] 0.008 0.050 0.176 0.067 0.054 
JAR [2004] 0.016 0.074 0.211 0.091 0.063 
JAR [2005] 0.008 0.034 0.087 0.040 0.024 
JAR [2006] 0.015 0.079 0.231 0.098 0.068 
JAR [2007] 0.009 0.031 0.069 0.035 0.018 
JAR [2008] 0.004 0.020 0.047 0.022 0.013 
JAR [2009] 0.004 0.024 0.060 0.027 0.017 
JAR [2010] 0.002 0.016 0.041 0.018 0.012 
JAR [2011] 0.010 0.051 0.126 0.059 0.036 
JAR [2012] 0.004 0.021 0.053 0.025 0.015 
JAR [2013] 0.003 0.020 0.053 0.023 0.016 
JAR [2014] 0.002 0.019 0.053 0.023 0.016 
JAR [2015] 0.003 0.023 0.059 0.027 0.017 
JAR [2016] 0.002 0.027 0.075 0.032 0.023 
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